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ABSTRACT

Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected
mass density across the sky. These “mass maps” provide a powerful tool for studying cosmol-
ogy as they probe both luminous and dark matter. In this paper, we present a weak lensing
mass map reconstructed from shear measurements in a 139 deg? area from the Dark Energy
Survey (DES) Science Verification (SV) data overlapping with the South Pole Telescope sur-
vey. We compare the distribution of mass with that of the foreground distribution of galaxies
and clusters. The overdensities in the reconstructed map correlate well with the distribution of
optically detected clusters. Cross-correlating the mass map with the foreground galaxies from
the same DES SV data gives results consistent with mock catalogs that include the primary
sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statisti-
cal significance of the cross-correlation is at the 6.8c level with 20 arcminute smoothing. A
major goal of this study is to investigate systematic effects arising from a variety of sources,
including PSF and photo-z uncertainties. We make maps derived from twenty variables that
may characterize systematics and find the principal components. We find that the contribution
of systematics to the lensing mass maps is generally within measurement uncertainties. We
test and validate our results with mock catalogs from N-body simulations. In this work, we
analyze less than 3 % of the final area that will be mapped by the DES; the tools and analy-
sis techniques developed in this paper can be applied to forthcoming larger datasets from the
survey.
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1 INTRODUCTION

Weak gravitational lensing is a powerful tool for cosmological stud-
ies (see Bartelmann & Schneider 2001; Hoekstra & Jain 2008, for
detailed reviews). As light from distant galaxies passes through
the mass distribution in the Universe, its trajectory gets perturbed,
causing the apparent galaxy shapes to be distorted. Weak lensing
statistically measures this small distortion, or “shear”, for a large
number of galaxies to infer the 3D matter distribution. This allows
us to constrain cosmological parameters and study the distribution
of mass in the Universe.

Since its first discovery, the accuracy and statistical precision
of weak lensing measurements have improved significantly (Van
Waerbeke et al. 2000; Kaiser, Wilson & Luppino 2000; Bacon, Re-
fregier & Ellis 2000; Hoekstra et al. 2006; Lin et al. 2012; Hey-
mans et al. 2012). Most of these previous studies constrain cos-
mology through N-point statistics of the shear signal (e.g. Bacon
et al. 2003; Jarvis et al. 2006; Semboloni et al. 2006; Fu et al.
2014; Jee et al. 2013; Kilbinger et al. 2013). In this paper, how-
ever, we focus on generating two-dimensional wide-field projected
mass maps from the measured shear (Van Waerbeke, Hinshaw &
Murray 2014). These mass maps are particularly useful for view-
ing the non-Gaussian distribution of dark matter in a different way
than is possible with N-point statistics.

Probing the dark matter distribution in the Universe is par-
ticularly important for several reasons. Based on the peak statis-
tics from a mass map it is possible to identify dark matter halos
and constrain cosmological parameters (e.g. Jain & Van Waerbeke
2000; Fosalba et al. 2008; Kratochvil, Haiman & May 2010; Bergé,
Amara & Réfrégier 2010). Mass maps also allow us to study the
connection between baryonic matter (both in stellar and gaseous
forms) and dark matter (Van Waerbeke, Hinshaw & Murray 2014).
This can be measured by cross correlating light maps and gas maps
with weak lensing mass maps. Correlation with light maps, which
can be constructed using observed galaxies, groups and clusters of
galaxies etc., can be used to constrain galaxy bias, the mass-to-light
ratio, and the dependence of these statistics on redshift and envi-
ronment (Amara et al. 2012; Jauzac et al. 2012; Shan et al. 2014;
Hwang et al. 2014). However, one needs to take caution when in-
terpreting the weak lensing mass maps, as the completeness and
purity of structure detection via these maps is not very high due to
their noisy nature (White, van Waerbeke & Mackey 2002).

One other interesting application of the mass map is that it al-
lows us to identify large scale structures (both super-clusters and
voids) which are otherwise difficult to find (e.g. Heymans et al.
2008). Characterizing the statistics of large structures can be a sen-
sitive probe of cosmological models. Structures with masses as
high or higher than clusters require special attention as the mas-
sive end of the halo mass function is very sensitive to the cosmol-
ogy (Bahcall & Fan 1998; Haiman, Mohr & Holder 2001; Holder,
Haiman & Mohr 2001). These rare structures also allows us to con-
strain different theories of gravity (Knox, Song & Tyson 2006; Jain
& Khoury 2010). In addition to the study of the largest assemblies
of mass, the study of number density of the largest voids allows
further tests of the ACDM model (e.g. Plionis & Basilakos 2002).

Similar mass mapping technique as used in this paper has
been previously applied to the Canada-France-Hawaii Telescope
Lensing Survey (CFHTLenS) as presented in Van Waerbeke et al.
(2013). Their work demonstrated the potential scientific value of
these wide-field lensing mass maps, including measuring high-
order moments of the maps and cross-correlation with galaxy den-

sities. The total area of the mass map in that work is similar to our
dataset, though it was divided into four separate smaller fields.

The main goal of this paper is to construct a weak lensing mass
map from a 139 deg? area in the Dark Energy Survey' (DES, The
Dark Energy Survey Collaboration 2005; Flaugher 2005) Science
Verification (SV) data, which overlaps with the South Pole Tele-
scope survey (the SPT-E field). The SV data were recorded using
the newly commissioned wide-field mosaic camera, the Dark En-
ergy Camera (DECam; Diehl & Dark Energy Survey Collaboration
2012; Flaugher et al. 2012; Flaugher & The Dark Energy Survey
Collaboration submitted to A. J.) on the 4m Blanco telescope at
the Cerro Tololo Inter-American Observatory (CTIO) in Chile. We
cross correlate this reconstructed mass map with optically identi-
fied structures such as galaxies and clusters of galaxies. This work
opens up several directions for future explorations with these mass
maps.

This paper is organized as follows. In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe in
§3 the DES dataset used in this work, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with known foreground structures found via independent optical
techniques. In §5, we quantify the wide-field mass-to-light corre-
lation on different spatial scales using the full field. We show that
our results are consistent with expectations from simulations. In §6
we estimate the level of contamination by systematics in our results
from a wide range of sources. Finally, we conclude in §7.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in §2.1. Then, we describe the adopted mass reconstruction
method in §2.2. Finally in §2.3, we describe our method of gen-
erating galaxy density maps. The galaxy density maps are used as
independent mass tracers in this work to help confirm the signal
measured in the weak lensing mass maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This
phenomenon is called gravitational lensing. The local mapping be-
tween the source () and image (0) plane coordinates (aside from
an overall displacement) can be described by the lens equation:

B—PBo=A(8)(6—6p), )

where By and 6 is the reference point in the source and the image
plane. A is the Jacobian of this mapping, given by

1— —
A(0) = (1-x) ( . 1+“fu)’ @)

where K is the convergence, u; = ¥;/(1 — k) is the reduced shear
and % is the shear. i = 1,2 refers to the 2D coordinates in the plane.
The premultiplying factor (1 — k) causes galaxy images to be di-
lated or reduced in size, while the terms in the matrix cause dis-
tortion in the image shapes. Under the Born approximation, which

! http://www.darkenergysurvey.org
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assumes that the deflection of the light rays due to the lensing effect
is small, A is given by (e.g. Bartelmann & Schneider 2001)

Aij(0,r) = 6;j — v, 3)

where v is the lensing deflection potential, or projected gravita-
tional potential along the line of sight. For a spatially flat Universe,
it is given by the line of sight integral of the 3-dimensional gravita-
tional potential P,

r/
/

v(8,r) = —2/(;rdr/ ®(0,r), 4)

r—

rr
where r is the comoving distance. Comparison of Eqn. 3 with
Eqn. 2 gives

_loa,
K_QVII/’ (5)

. 1 .
7:?’14-17/2:5(‘!’,11—‘#’.22)4-11!/,12- (6)

For the purpose of this paper, we use the Limber approximation
which lets us use the Poisson equation for the density fluctuation
8 = (A—A)/A (where A and A are the 3-dimensional density and
mean density respectively):

Vi =

1) 7
VRIS @)
where a is the cosmological scale factor. Equations 4 and 5 give
the convergence measured at a sky coordinate 6 from sources at
comoving distance r:

k(0,r) = Mo /rdr’ (r=r)r’ (6,r)
’ 2¢2 Jo r a(r)

We can generalize to sources with a distribution in comoving dis-
tance (or redshift) f(r) as: x(0) = [x(0,r)f(r)dr. That is, a K
map constructed over a region on the sky gives us the integrated
mass density fluctuation in the foreground of the k¥ map weighted
by the lensing weight p(r), which is itself an integral over f(r):

®

_ 3HZQu [ 3(6,r)
k(0) = 22 /drp(r)r ar) 9)
with

r—r

H
pin= [ ars) (10
r
where ry is the comoving distance to the horizon. For a specified
cosmological model and f(r) specified by the redshift distribution
of source galaxies, the above equations provide the basis for pre-
dicting the statistical properties of k.

r

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant ad-
ditive factor as long as the structures are in the linear regime (Van
Waerbeke et al. 2013), i.e. scales larger than clusters. In the non-
linear regime (scales corresponding to clusters or smaller struc-
tures) improved methods have been developed to recover the mass
distribution (e.g. Bartelmann et al. 1996; Bridle et al. 1998). In this
paper we are interested in the mass distribution on large scales; we
can therefore restrict ourselves to the KS method. The KS method
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works as follows. The Fourier transform of the observed shear, 7,
relates to the Fourier transform of the convergence, k through

K =D/, 1D

13— 13 +2il1

D, =

(12)
where /; are the Fourier counterparts for the angular coordinates 6;,
i = 1,2 represent the two dimensions of sky coordinate. The above
equations hold true for / # 0. In practice we apply a sinusoidal pro-
jection of sky with a reference point at RA=71.0 and then pixelize
the observed shears with a pixel size of 5 arcmin before Fourier
transforming. Given that we mainly focus on scales less than a de-
gree in this paper, the errors due to the projection is small (Van
Waerbeke et al. 2013).

The inverse Fourier transform of Eqn. 11 gives the conver-
gence for the observed field in real space. Ideally, the imaginary
part of the inverse Fourier transform will be zero as the convergence
is a real quantity. However, noise, systematics and masking causes
the reconstruction to be imperfect, with non-zero imaginary con-
vergence as we will quantify in §5.2. The real and imaginary parts
of the reconstructed convergence are referred to as the E and B-
mode k respectively. In our reconstruction procedure we set shears
to zero in the masked regions.

One of the issues with the KS inversion is that the uncertainty
in the reconstructed convergence is formally infinite for a discrete
set of noisy shear estimates. This is because the statistically un-
correlated ellipticities of galaxies result in a white noise power
spectrum which integrates to infinity for large spatial frequencies.
Therefore we need to remove the high frequency components by
applying a filter. For a Gaussian filter of size ¢ the covariance of
the statistical noise in the convergence map can be written as (Van
Waerbeke 2000)

2 )
(k(0)(0')) = exp(f“’—e'), 13

 4rmolng 202

where o is the RMS of the single component ellipticity (which
contains the intrinsic shape noise and measurement noise) and g
is the number density of the source galaxies. Eqn. 13 implies that
the shape noise contribution to the convergence map reduces with
increasing size of the Gaussian window and number density of the
background source galaxies.

2.3 Lensing-weighted galaxy density maps

In addition to the mass map generated from weak lensing measure-
ments in §2.2, we also generate mass maps based on the assumption
that galaxies are linearly biased tracers of mass in the foreground.
In particular, we study two galaxy samples: the general field galax-
ies and the Luminous Red Galaxies (LRGs). Properties of the sam-
ples used in this work such as the redshift distribution, magnitude
distribution etc. are described in §3.2. To compare with the weak
lensing mass map, we assume that the bias is constant. However,
bias may change with spatial scale, redshift, magnitude and other
galaxy properties. This can introduce differences between the weak
lensing mass map and foreground map. In this paper we neglect
such effects since we mostly focus on large scales where the depar-
tures from linear bias are small.

Based on a given sample of mass tracer we generate a
weighted foreground map (k) after applying an appropriate lens-
ing weight to each galaxy before pixelation. In principle the weight
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increases the signal-to-noise (S/N) of the cross-correlation between
the lensing mass map and the foreground density map. The lensing
weight (Eqn. 10) depends on the comoving distance to the source
and lens, and the distance between them. To generate the weighted
galaxy density map, we first generate a three-dimensional grid of
the galaxies. We estimate the density contrast in each of these cells
as follows:
65’; k_ ”ijk__ Mg (14)
Ny
where (i, j) is the pixel index in the projected 2D sky and k is the
pixel index in the redshift direction. n; j is the number of galaxies
in the i jk" cell and 7y, is the average number of galaxies per pixel in
the k" redshift bin. This three dimensional grid of galaxy density
fluctuations will be used to estimate k, according to the discrete
version of Eqn. §,
i 3HIOQ 8P dy « (d—dy)g
K =0 ;A a l;( a (15)

where kg’ is the weighted foreground map at the pixel (i, j); k and /
represent indices along the redshift direction for lens and source, A
is the physical size of the redshift bin, d; is the angular diameter dis-
tance to source, gy is the probability density of the source redshift
distribution at redshift / and SI?D is the foreground density fluctua-
tion at angular diameter distance dj. In this work, we adopt the fol-
lowing cosmological parameters: Q,, = 0.3, Q4 = 0.7, & = 0.0,
h =0.72 (Hinshaw et al. 2013). Our results depend very weakly on
the exact values of these cosmological parameters.

3 DATA AND SIMULATIONS

The measurements in this paper are based on 139 deg? of data in the
SPT-E field, observed as part of the Science Verification (SV) data
from DES. The SV data were taken during the period of November
2012 — February 2013 before the official start of the science sur-
vey. The data were taken shortly after DECam commissioning and
were used to test survey operations and assess data quality. Five
optical filters (grizY’) were used throughout the survey, with typical
exposure times being 90 sec for griz and 45 sec for Y. The final
median depth estimates of this data set in our region of interest are
g~24.0,r~239,i~23.0andz~22.3.

Below we introduce in §3.1 the relevant data used in this work
and in §3.3 the simulations we use to interpret our measurements.
Then we define in §3.2 two subsamples of the SV data that we
identify as “foreground (lens)” and “background (source)” galaxies
for the main analysis of the paper.

3.1 The DES SVA1 Gold galaxy catalogs

All galaxies used for foreground catalogs and lensing measure-
ments are drawn from the DES SVA1 Gold Catalog (Rykoff et al.,
in preparation) and several extensions to it. The main catalog is
a product of the DES Data Management (DESDM) pipeline ver-
sion “SVA1” (Yanny et al., in preparation). The DESDM pipeline,
as described in Ngeow et al. (2006); Sevilla et al. (2011); Desai
et al. (2012); Mohr et al. (2012), begins with initial image process-
ing on single-exposure images and astrometry measurements from
the software package SCAMP (Bertin 2006). The single-exposure
images were then stacked to produce co-add images using the soft-
ware package SWARP (Bertin et al. 2002). Basic object detection,

point-spread-function (PSF) modelling, star-galaxy classification®
and photometry were done on the individual images as well as the
co-add images using software packages SEXTRACTOR (Bertin &
Arnouts 1996) and PSFEX (Bertin 2011). The full SVA1 Gold
dataset consists of 254.4 deg? with griz-band coverage, and 223.6
deg? for Y band. The main science goal for this work is to recon-
struct wide-field mass maps; as a result, we use the largest contin-
uous region in the SV data: 139 deg? in the SPT-E field.

The SVA1 Gold Catalog is augmented by: a photometric red-
shift catalog, two galaxy shape catalogs, and an LRG catalog.
These catalogs are described below.

3.1.1 Photometric redshift catalog

In this work we use the photometric redshift (photo-z) estimated
with the Bayesian Photometric Redshifts (BPZ) code (Benitez
2000; Coe et al. 2006). The photo-z’s are used to select the main
foreground and background sample (see §3.2). The details and ca-
pabilities of BPZ on early DES data were already presented in
Sanchez et al. (2014), where it showed good performance among
template-based codes. The primary set of templates used contains
the Coleman, Wu & Weedman (1980) templates, two starburst tem-
plates from Kinney et al. (1996) and two younger starburst sim-
ple stellar population templates from Bruzual & Charlot (2003),
added to BPZ in Coe et al. (2006). We calibrate the Bayesian prior
by fitting the empirical function I1(z,¢|mg) proposed in Benitez
(2000), using a spectroscopic sample matched to DES galaxies and
weighted to mimic the photometric properties of the DES SV sam-
ple used in this work. As tested in Sdnchez et al. (2014), the bias
in the photo-z estimate is ~0.02, with 68% scatter ogg ~ 0.1 and
the 30 outlier fraction ~2%. For this work, we use Z;0q41, the mean
of the Probability Distribution Function (PDF) output from BPZ as
a single-point estimate of the photo-z to separate our galaxies into
the foreground and background samples. Other photo-z codes used
in DES have been run on the same data. For this work we have also
checked our main results in §5 using an independent Neural Net-
work code (Skynet; Bonnett 2013; Graff & Feroz 2013). We found
that BPZ and Skynet gives consistent results (within 15) in terms
of the cross-correlation between the weak lensing mass maps and
the foreground galaxy map.

3.1.2  Shape catalogs

Based on the SVA1 data, two shear catalogs were produced and
tested extensively in Jarvis et al. (in preparation): the ngmix> (ver-
sion 011) catalog and the im3shape” (version 9) catalog. The main
results shown in our paper are based on the ngmix catalog, but we
also cross-check with the im3shape catalog to confirm that the re-
sults are statistically consistent.

The PSF model for both methods are based on the single-
exposure PSF models from PSFEX. PSFEX models the PSF as
a linear combination of small images sampled on an ad hoc pixel

2 We adopt the “MODEST_CLASS” classifier, which is a new classifier used
for SVA1 Gold that has been developed empirically and tested on DES
imaging of COSMOS fields with Hubble Space Telescope ACS imaging.

3 The open source code can be downloaded at: https://github.com/
esheldon/ngmix

4 The open source code can be downloaded at: https://bitbucket.
org/joezuntz/im3shape/

(© 0000 RAS, MNRAS 000, 000-000



Wide Field Lensing Mass Maps from DES 5

Table 1. Catalogs and cuts used to construct the foreground and background sample for this work, and the number of galaxies
in each sample after all the cuts are applied. All catalogs are based on the DES SVAI dataset.

Background Foreground main Foreground LRG
Input catalog ngmix011  im3shape SVA1 Gold Redmagic
Photometric redshift 0.6<z<1.2 0.1<z<0.5 0.2<z<0.5
Others “conservative additive” MAG_AUTO_1<22 constant density

1073 (h'Mpc) 3

Number of galaxies 1,111,487 1,013,317 1,106,189 28,033
Number density (arcmin—?2) 2.22 2.21 0.056
Mean redshift 0.826 0.367 0.385

grid, with coefficients that are the terms of a second-order polyno-
mial of pixel coordinates in each DECam CCD.

ngmix (Sheldon 2014) is a general tool for fitting models to as-
tronomical images. For the galaxy model, ngmix supports various
options including exponential disk and de Vaucouleurs’ profile (de
Vaucouleurs 1948), all of which are implemented approximately as
a sum of Gaussians (Hogg & Lang 2013). Additionally, any num-
ber of Gaussians can be fit. These Gaussian fits can either be com-
pletely free or constrained to be co-centric and co-elliptical. For
the DES SV galaxy images, we used the exponential disk model.
For the PSF fitting, an Expectation Maximization (Dempster, Laird
& Rubin 1977) approach is used to model the PSF as a sum of
three free Gaussians. Shear estimation was carried out using by
jointly fitting multiple images in r,i,z bands. The multi-band ap-
proach enabled a larger effective galaxy number density compared
to the im3shape catalog, which is based on single-band images in
the current version.

The im3shape (Zuntz et al. 2013) implementation in this
work estimates shapes by jointly fitting a parameterized galaxy
model to all of the different single-exposure r-band images, find-
ing the maximum likelihood solution. Calibration for bias in the
shear measurement associated with noise (Refregier et al. 2012;
Kacprzak et al. 2012) is applied. An earlier version of this code
(run on the co-add images instead of single-exposures) has been
run on the SV cluster fields for cluster lensing studies (Melchior
et al. 2015).

Details for both shape catalogs and the tests performed on
these catalogs can be found in Jarvis et al. (in preparation). Both
shear catalogs have been tested and shown to pass the requirements
for SV cosmic shear measurement, which is much more stringent
than what is required in this paper. As our analysis is insensitive to
the overall multiplicative bias in the shear measurements, we adopt
the “conservative additive” selection tested in that paper; this re-
sults in small additive systematic uncertainties, but possibly some
moderate multiplicative systematic uncertainties. For ngmix, this
cut removes galaxies with S/N<20 and very small galaxies (Gaus-
sian sigma smaller than the pixel scale). For im3shape, it removes
galaxies with S/N<15. In both cases, there were many other cuts
applied to both catalogs to remove stars, spurious detections, poor
measurements, and various other effects that significantly biased
shear estimates for both catalogs. Further details are given in Jarvis
et al. (in preparation).

3.1.3  The red-sequence Matched filter Galaxy Catalog
(Redmagic)

We use the DES SV red-sequence Matched-filter Galaxy Catalog
(Redmagic Rozo et al., in preparation) v6.3.3 in this paper as a sec-

© 0000 RAS, MNRAS 000, 000-000

ond foreground sample. The objects in this catalog are photomet-
rically selected luminous red galaxies (LRGs). We use the terms
Redmagic galaxies and LRG interchangeably. Specifically, Red-
magic uses the Redmapper-calibrated model for the color of red-
sequence galaxies as a function of magnitude and redshift (Rykoff
et al. 2014). This model is used to find the best-fit photometric red-
shift for all galaxies irrespective of type, and the x2 goodness-of-
fit of the model is computed. For each redshift slice, all galaxies
fainter than some minimum luminosity threshold L, are rejected.
In addition, Redmagic applies a x2 cut x> < x2..» Where the cut
x,%ax as a function of redshift is chosen to ensure that the result-
ing galaxy sample has a nearly constant space density 7. In this
work, we set i = 10 33Mpc 3. We assume flat A CDM model
with cosmological parameters Q5 = 0.7, h = 100 (varying these
parameters does not change the results significantly). The luminos-
ity cut is L > 0.5L,(z), where the value of L.(z) at z=0.1 is set to
match the Redmapper definition for SDSS, and the redshift evo-
lution for L, (z) is that predicted using a simple passive evolution
starburst model at z = 3. We use the Redmagic sample because of
the exquisite photometric redshifts of the Redmagic galaxy catalog:
Redmagic photometric redshifts are nearly unbiased, with a scatter
0;/(14+2) = 1.7%, and a =~ 1.7% 40 redshift outlier rate. We refer
the reader to Rozo et al. (in preparation) for further details of this
catalog.

3.2 Foreground and background galaxy samples selection

As described in §1, the main goal of this paper is to construct a
projected mass map at a given redshift via weak lensing and to
show that the mass map corresponds to real structures, or mass, in
the foreground line-of-sight. For that purpose, we define two galaxy
samples in this study — the background “source” sample which is
lensed by foreground mass, and the foreground “lens” sample that
traces the foreground mass responsible for the lensing. We wish
to construct a weak lensing mass map from the background sample
according to §2.2 and compare it with the mass map generated from
the foreground galaxy density map according to §2.3.

We choose to have the two samples separated at redshift
~ 0.55 in order to have a sufficient number of galaxies in both sam-
ples. Given that the photo-z training sample of our photo-z catalog
does not extend to the same redshift and magnitude range as our
data, we exclude objects with photo-z outside the range 0.1-1.2.
The final foreground and background sample are separated by the
photo-z cut of 0.1 < z < 0.5 and 0.6 < z < 1.2. Note that the Red-
magic foreground galaxy sample has an additional redshift thresh-
oldz>0.2.

The main quantity of interest for the background galaxy sam-
ple is the shear measured for each galaxy. Since the background
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Figure 1. Distributions of the single-point photo-z estimates for the back-
ground and foreground samples used in this paper are shown in the top
panel. The background and the foreground main sample uses the mean of
the PDF from BPZ for single-point estimates, while the LRG redshift esti-
mate comes independently from Redmagic (see §3.1.3). The second panel
shows the corresponding n(z) of the background and foreground main sam-
ple given by BPZ. These come from the sum of the PDF for all galaxies
in the samples. The lensing efficiency (Equation 10) corresponding to the
background sample is shown in the third panel.

sample only serves as a “backlight” for the foreground structure we
are interested in, it need not be complete. Therefore the most im-
portant selection criteria for the background sample is to use galax-
ies with accurate shear measurements. Our source selection criteria
are based on extensive tests of shear catalog as described in Jarvis
et al. (in preparation). After applying the conservative selection of
background galaxies and our background redshift cut we are left

with 1,111,487 galaxies (2.22/arcmin2) for ngmix and 1,013,317
galaxies (2.03/arcmin?) for im3shape.

The foreground sample in this work serves as the tracer of
mass. Thus it is important to construct a magnitude-limited sam-
ple for which the number density is affected as little as possible by
external factors. The main physical factors that contribute to varia-
tion in the galaxy number density are the spatial variation in depth
and seeing. Both effects can introduce spatial variation in the fore-
ground galaxy number density, which can be wrongly identified as
foreground mass fluctuations. We test both effects in Appendix A.
Two subsamples are used in this work as foreground samples: the
“main” foreground sample and the LRG foreground sample. While
the space density of LRGs is significantly lower than that of the
main sample, they are better tracers of galaxy clusters and groups,
so we use them to check our results. The main foreground sample
includes all the galaxies with i < 22 and the LRG sample includes
the LRGs in the Redmagic LRG catalog with i < 22. This magni-
tude selection is based on tests described in Appendix Al to en-
sure that our sample is shallower than the limiting magnitude for
all regions of sky under study. The final main foreground sample
contains 1,106,189 galaxies (2.21/arcmin2), while the LRG sam-
ple contains 28,033 galaxies (0.05/arcmin2). Table 1 summarizes
all the selection criteria and cuts applied on the three main samples
used in this work.

Figure 1 shows the distributions of the single-point photo-z
estimates (zeqn) for the final foreground and background samples
(top panel), the n(z) (from the BPZ code) for the background and
main foreground sample (second panel), and the lensing efficiency
corresponding to the background sample (bottom panel). Note that
the background galaxy number density is lower than expected for
other weak lensing applications as we have made stringent redshift
cuts to avoid overlap between the foreground and background sam-
ples.

3.3 Mock catalogs from simulations

To validate the mass reconstruction procedure we use a set of sim-
ulated galaxy catalogs “Aardvark v1.0c” developed for the DES
collaboration (Busha et al. 2013). The full catalog covers 1/4 of the
sky and is complete to the final expected DES depth.

The heart of the galaxy catalog generation is the algorithm
Adding Density Determined Galaxies to Lightcone Simulations
(ADDGALS:; Busha et al. 2013), which aims at generating a galaxy
catalog that matches the luminosities, colors, and clustering prop-
erties of the observed data. The simulated galaxy catalog is based
on three flat ACDM dark matter-only N-body simulations, one
each of a 1050 Mpc/h, 2600 Mpc/h and 4000 Mpc/h boxes with
14003, 20483 and 20483 particles respectively. These boxes were
run with LGadget-2 (Springel 2005) with 2LPTic initial condi-
tions from Crocce, Pueblas & Scoccimarro (2006) and CAMB (Lewis
& Bridle 2002). From an input luminosity function, galaxies are
drawn and then assigned to a position in the dark matter simula-
tion volume according to a statistical prescription of the relation
between the galaxy’s magnitude, redshift and local dark matter den-
sity. The prescription is derived from a high-resolution simulation
using SubHalo Abundance Matching techniques (Conroy, Wech-
sler & Kravtsov 2006; Reddick et al. 2013; Busha et al. 2013).
Next, photometric properties are assigned to each galaxy, where
the magnitude-color-redshift distribution is designed to reproduce
the observed distribution of SDSS DR8 and DEEP2 data. The size
distribution of the galaxies is magnitude-dependent and modelled
from a set of deep (i ~26) SuprimeCam i-band images, which were
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taken at with seeing conditions of 0.6”. Finally, the weak lens-
ing parameters (k and y) in the simulations are based on the ray-
tracing algorithm Curved-sky grAvitational Lensing for Cosmolog-
ical Light conE simulatioNS (CALCLENS; Becker 2013). The ray-
tracing resolution is accurate to o~ 6.4 arcseconds, sufficient for the
usage in this work.

Aside from the intrinsic uncertainties in the modelling in the
mock galaxy catalog (related to the input parameters and uncer-
tainty in the galaxy-halo connection), there are also many real-
world effects that are not included in these simulations, including
as depth variation, seeing variation and shear measurement uncer-
tainties. As a result, we use the simulations primarily as a tool to
understand the impact of various effects on the expected signal, and
a sanity check to confirm that our measurement method is produc-
ing reasonable results.

4 RESULTS: MASS MAPS AND GALAXY CLUSTERS

In Figure 2 we show our final convergence maps generated using
the data described in §3.1 and the methods described in §2.2 and
§2.3. For the purpose of visualization we present maps for 20 ar-
cmin Gaussian smoothing. In the top left panel we show the E-
mode convergence map generated from shear. The top right panel
shows the weighted foreground galaxy map from the main sample,
K¢ main Map. In both of these panels, red areas correspond to over-
densities and blue areas correspond to under densities. The bottom
left and bottom right panels show the product of the kg (left) and
Kp (right) maps with the Kg 4, Visually we see that there are more
positive (correlated) areas for the kg map compared to the kg map,
indicating clear detection of the weak lensing signal in these maps.
Note that these positive regions could be either mass over-densities
or under-densities. In §5, we present a quantitative analysis of this
correlation.

4.1 Noise estimates for the mass maps

To estimate the significance of the structures in the mass maps, it is
important to understand the noise properties of these maps. Uncer-
tainties in the lensing convergence map include contributions from
both shape noise and measurement uncertainties, which is affected
by the number density of galaxies across the field and the shear
measurement method.

We estimate the uncertainties on each pixel by randomising
the shear measurements on each galaxy. A thousand random back-
ground galaxy catalogs were generated by shuffling the shear val-
ues between all the galaxies. We then construct kg and kp maps
from these randomized catalogs in the same way as in Figure 2.
The RMS map for these 1000 random samples is used as the noise
map. Dividing the signal map (Figure 2) by the noise map gives
an estimate for the S/N of the different structures in the maps, as
shown in Figure 3. These values are consistent with those predicted
via Equation 13 and simulations described in §5.2. The bottom pan-
els of Figure 3 show the distribution of the S/N values for both E
and B-mode maps for data as well as simulations. We find that the
B-mode distribution is consistent with a Gaussian distribution and
the E-mode gives more extreme values.

4.2 Correlation with known structures

In this section we compare our mass map with optically identified
clusters using Redmapper v6.3.3 (Rykoff et al. in preparation) from
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DES data. We compare optically identified groups and clusters of
galaxies in our data based on Redmapper with the reconstructed
mass map. We overlay in Figure 4 Redmapper clusters and groups
on the mass map as black circles. The size of these circles corre-
sponds to the optical richness of these structures. Also, only objects
with optical richness A greater than 20 and redshift between 0.1
and 0.5 are shown in the figure. According to Rykoff et al. (2012)
and Saro et al. (in preparation), this corresponds to cluster masses
larger than a few times 10'4 M. Tt is evident from this figure that
the structures in the weak lensing mass map have significant corre-
lation with the distribution of optically identified Redmapper clus-
ters.

From the mass and galaxy maps in Figure 2 and Figure 4
we identified large peaks at the positions (RA, DEC) = (71.0, -
45.0), (70.0, -47.8), (69.8, -54.5) and (69.1, -57.3), and large voids
at (RA, DEC) = (65.7, -49.0), (74.8, -54.8), (75.7, -58.0), (82.8,
-59.5). Analyzing the redshift distribution of the foreground struc-
ture at these locations shows that the peaks indeed correspond to
supercluster like structures that are typically localized in the red-
shift range 0.3 — 0.4, though in at least one case there is evidence
for multiple structures at different redshifts. The tight photo-z ac-
curacy of the Redmapper clusters (6; = 0.01(1 +z)) gives us some
confidence in the identification of real 3D structures. The trans-
verse spatial extent of the superclusters is typically greater than 10
Mpc. We believe this approach provides a powerful tool for iden-
tifying superstructures in the Universe which would otherwise be
hard to spot. The size and mass of the superclusters are of interest
for cosmology as they represent the most massive end of the mat-
ter distribution. We defer more detailed studies of the superclusters
and voids to follow up work.

5 RESULTS: MASS MAPS AND CORRELATION WITH
GALAXY DISTRIBUTION

In this section we quantitatively analyze the extent to which mass
follows galaxy density in the data. To do this, we cross-correlate
the weak lensing mass map with the weighted foreground galaxy
density map. The correlation is quantified via the Pearson cross-
correlation coefficient as described in §5.1. We cross check the re-
sults using simulations in §5.2.

5.1 Quantifying the galaxy-mass correlation

We smooth both the convergence maps generated from weak lens-
ing and from the foreground galaxy density with a Gaussian filter.
These smoothed maps are used to estimate the correlation between
the foreground structure and the weak lensing convergence maps.
We calculate the correlation as a function of the smoothing scale
(i.e. the size of the Gaussian filter). The correlation is quantified
via the Pearson correlation coefficient defined as

_ (kekg)
pKEK'g - O O )
£ Re

(16)

where (Kg k) is the covariance between kg and K,; Ok, and Ok,
are the standard deviation of the kg map, and the kK, map from
either the foreground main galaxy sample or the foreground LRG
sample. In this calculation, pixels in the masked region are not used.
We also remove pixels within 10 arcmin of the boundaries to avoid
significant artefacts from the smoothing.

Figure 5 shows the Pearson correlation coefficient as func-
tion of smoothing scales from 2 to 40 arcmin. We find that there
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Figure 2. The upper left panel shows the E-modes of the weak lensing convergence map. The upper right shows the weighted foreground galaxy map from
the main sample, or Kg juain. The lower two panels show the product maps of the E-mode (left) and B-mode (right) convergence map with the &g yuqin map. All
maps are generated with a 5 arcmin pixel scale and 20 arcmin Gaussian smoothing. Red areas corresponds to overdensities and blue areas to underdensities in
the upper panels. White regions correspond to the survey mask. The scale of the Gaussian smoothing kernel is indicated by the circle on the upper right corner,
with a radius of 20 arcmin (the equivalent radius of a top-hat kernel is larger by a factor of /2).
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Figure 3. The top panel shows the S/N map for the mass map in Figure 2 estimated via randomized errors described in §4.1. Note that due to the Gaussian
smoothing kernel, there is some mixing of scales which leads to higher contrasts in the cores of over and under-dense regions compared to top-hat smoothing.
The bottom panel shows the normalized S/N distributions for both maps, overlaid by those measured from simulations described in §5.2. The red dashed lines

in both bottom panels show a Gaussian fit to the B-mode S/N.

is significant correlation between the weak lensing E-mode con-
vergence and convergence from different foreground samples, with
increasing correlation towards large smoothing scale. This trend is
expected for noise-dominated maps, because the larger smoothing
scales reduce the noise fluctuations in the map significantly. A sim-
ilar trend is found when using the LRGs as foreground instead of
the general magnitude-limited galaxy sample. The lower Pearson
correlation between the mass map and LRG sample is because of
the larger shot noise due to the lower number density compared
to the magnitude-limited foreground sample. The error bar on the
correlation coefficient is estimated based on jackknife resampling.
We divide the observed sky into jackknife regions of size 10 deg?
and recalculate the Pearson correlation coefficients, excluding one
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of the 10 deg? regions each time. We found that the estimated un-
certainties do not depend significantly on the exact value of patch
size. We estimate the correlation coefficient after removing one of
those patches from the sample to get jackknife realizations of the
cross-correlation coefficient p;. Finally, the variance is estimated
as

a7

where j runs over all the N jackknife realizations and p is the aver-
age correlation coefficients of all patches.

We find that the Pearson correlation coefficient between kg
from the main foreground galaxy sample (LRG sample) and weak
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Figure 4. The DES SV mass map along with foreground galaxy clusters detected using the Redmapper algorithm. The clusters are overlaid as black circles
with the size of the circles indicating the richness of the cluster. Only clusters with richness greater than 20 and redshift between 0.1 and 0.5 are shown in
the figure. The upper right corner shows the correspondence of the optical richness to the size of the circle in the plot. It can be seen that there is significant
correlation between the mass map and the distribution of galaxy clusters. Several superclusters and voids can be identified in the joint map.

lensing E-mode convergence is 0.39 +0.06 (0.36 £0.05) at 10 ar-
cmin smoothing and 0.52+0.08 (0.4640.07) at 20 arcmin smooth-
ing. This corresponds to a ~ 6.86 (7.50) significance at 10 arcmin
smoothing and ~ 6.86 (6.40) at 20 arcmin smoothing. As a zeroth-
order test of systematics we also estimated the correlation between
the B-mode weak lensing convergence and the k, maps. We find
that the correlation between xp and the main foreground sample
is consistent with zero at all smoothing scales. Similarly, the cor-
relation between E and B modes of k is consistent with zero. For
comparison, we show the same plot calculated for the im3shape
catalog in Figure 6. We find very similar results, with slightly larger
correlation between kg and kg at the 16 level.

5.2 Comparison with mock catalogs

At this point, it is important to verify whether our measurements
in the data are consistent with what is expected. We investigate
this using the simulated catalogs described in §3.3. As the simu-
lations lack several realistic systematic effects in the data, these
tests mainly serve as a guidance for us to understand: (1) the origin
of the B-mode in the k maps, (2) the approximate expected level of
Pxi, under pixelization and smoothing, (3) the effect on Py, from
photo-z uncertainties and cosmic variance, and (4) the effect on the
maps and Pk, from the survey mask.

We construct a sample similar to the SV data. The same red-
shift, magnitude, and number density cuts in Table 1 are applied to
the simulations to form a foreground and a background sample. We
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Figure 5. This figure shows the Pearson correlation coefficient between foreground galaxies and convergence maps as a function of smoothing scale. The solid
and open symbols show the E and B-mode correlation coefficients respectively. The black circles are for the main foreground sample and the red circles for
foreground LRGs. The grey shaded regions show the 10 bounds for E and B mode correlations from simulations for the main foreground sample with the
same pixelization and smoothing (see §5.2 for details). We do not show the same simulation results for the LRG sample. The detection significance for the
correlation is in the range ~ 5 — 70 at different smoothing scales. The green points show the correlation between E and B-modes of the mass map. The various
B-mode correlations are consistent with zero. Uncertainties on all measurements are estimated based on jackknife resampling.
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Figure 6. Same as Figure 5 but using the im3shape galaxy catalog.

choose to simulate the main foreground sample as the LRG fore-
ground sample selection in the simulations is less controllable. For
the background sample, we add a random Gaussian of RMS 0.29
per component to the true shear in the simulations to generate a
model for the ellipticities that matches the data. We then create a
K, map from the main foreground sample and a k map from the
background sample the same way as is done in the data. The cross-
correlation coefficient Py, is calculated from these simulated maps
as in §5. We consider the same range of smoothing scales for the
maps when calculating Pxi, as that in Figure 6.

The simulations provide us a controlled way of separating the
different sources of effects. We construct the maps in the following
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steps, in order of increasing similarities to data: (1) pixelating and
smoothing the true k values; (2) constructing the x values from the
true 7y values; (3) construct the k values from the galaxy elliptici-
ties; (4) repeat (3) using a photo-z model for the foreground and the
background instead of the true redshift; (5) repeat (4) for different
regions on the sky; (6) repeat (5) with the SV survey mask.

The difference between (1) and (2) measures the quality of
the KS reconstruction method. The difference between (2) and (3)
shows the effect of shape noise and measurement noise. Steps (4),
(5) and (6) then show the effect of photo-z uncertainties, cosmic
variance and masking. Note that we estimate the effect of sample
variance by generating maps for 4 different regions on the sky. Also
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Figure 7. Maps from simulations that are designed to mimic the data in our
analysis. The simulations are generated for a field of size 15x17.6 deg? with
similar redshift and magnitude cuts for the foreground and the background
sample as the data. The true k and x, maps are shown in the first row, where
K, is modelled for the main foreground sample. The reconstructed kg and
kp maps from the true y are shown in the first two panels of the second
row, followed by the kr and kp maps reconstructed from the ellipticity (€)
values. The last row first shows the kg and kg constructed from & with
photo-z uncertainties, then the same maps with an SV survey mask applied.
The last two panels on the bottom most closely match the data.
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Figure 8. Pearson correlation coefficient Pxx, between the different sim-
ulated maps shown in Figure 7 as a function of smoothing scale. X repre-
sents the different k¥ maps as listed in the legend. This plot is the simulation
version of Figure 5, where one can see how the measured values in the data
could have been degraded due to various effects. The qualitative trend of the
correlation coefficients as a function of smoothing scale is consistent with
that observed in data. When reconstructing kg from the true y small errors
are introduced due to the nonlocal reconstruction, lowering the correlation
coefficient by a few percent. Adding shape noise to the shear measurement
lowers the signal significantly, with the level of degradation dependent on
the smoothing scale. Adding photo-z uncertainties changes the signal by a
few percent. Finally, placing an SV-like survey mask changes the signal by
~10%. The black curve with its error bars corresponds to the shaded region
in Figure 5.

for the steps (4)-(6) above, we generate each of the maps with 20
different realisations of the shape noise.

5.2.1 Maps from simulations

Figure 7 shows the various maps generated from one particular
patch of the simulations in this procedure for 5 arcmin pixels and 20
arcmin smoothing scales (consistent with that in Figure 2). The am-
plitude of kg and kp both become larger than in the true maps when
shape noise is added, and the resulting Kz map has only slightly
higher contrast than the kg map. When photo-z uncertainties are
included, we see that the peaks and voids in the kg maps visibly
move around. Applying the mask mainly changes the morphology
of the structures in the maps around the edges. Comparing the last
kg panel in Figure 7 and Figure 2, we see that the amplitude and
qualitative scales of the variation in the kg maps are similar. On the
other hand, if we compare the k, maps in the simulations with the
K, maps in Figure 2, we find some qualitative differences between
the simulations and the data. The simulation contains more small
scale structure and low-K, regions compared to the data. We do not
investigate this issue further here, as the level of agreement in the
simulations and the data is sufficient for our purpose.
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5.2.2  Correlation coefficients from simulations

Figure 8 shows the mean Pearson correlation coefficient between
the different maps as a function of smoothing scales for the 80 sets
of simulated maps (4 different areas in the sky and 20 realisations
of shape noise each). The error bars indicate the RMS spread of
these 80 simulations.

We find that pg,,,, k, is 10-20% below 1, which is the case for
perfect correlation. Several factors contribute to this. First, the fore-
ground galaxy sample only includes a finite redshift range, and not
all galaxies that contribute to the «;,,, map. Second, the presence
of a redshift-dependent galaxy bias adds further complication to
the correlation coefficient. The effect of converting from the true
shear y to convergence lowers the correlation coefficient by about
3%. This is a measure of the error in the KS conversion under fi-
nite area and resolution of the shear fields. The main degradation
of the signal comes when shape noise and measurement noise is in-
cluded. Photo-z uncertainties in both the foreground and the back-
ground sample changes the correlation coefficient slightly. Finally,
the survey mask lowers the signal by ~ 10%.

The final correlation coefficient after considering all the ef-
fects discussed above is shown by the black curve in Figure 8 and
overplotted as the shaded region in Figure 5. We find that the de-
pendence of Py, on the smoothing scale in the simulation is qual-
itatively and quantitatively very similar to that seen in Figure 5.

6 SYSTEMATIC EFFECTS

In §4.1 we evaluated the statistical uncertainties on the mass map
and the correlation between the mass map and the foreground
galaxy density maps. In this section we examine the possible sys-
tematic uncertainties in our measurement. We focus on the cross
correlation between our weak lensing mass map kg and the main
foreground density map Kg main. To simplify the notation, we omit
the “main” in the subscript and use K, to represent the main fore-
ground map in this section.

We investigate the potential contamination from systematic ef-
fects on the cross-correlation coefficient py, K . That is, we consider
the situation where part of the correlation between the mass map
and the k; map is not cosmological, but rather caused by other
physical systematic effects that are correlated with both maps si-
multaneously. We examine these systematic uncertainties in our
measurement by looking at the spatial correlation of various quan-
tities with the kg map and the K, map.

As discussed in Appendix A, there are several factors that can
contaminate the d, maps. For example, depth and PSF variations
in the observed field can introduce artificial clustering in the fore-
ground galaxy density map. Although we use magnitude and red-
shift cuts according to the tests in Appendix A, one can expect some
level of residual effects on the k, maps. The kg map is constructed
from shear catalogs of the background sample, thus systematics in
the shear measurement will propagate into the kg map. In Jarvis et
al. (in preparation), extensive tests of systematics have been carried
out on the shear catalog. Therefore here we focus on the systematics
that are specifically relevant for mass mapping and the correlation
coefficient Eqn. 16.

We identify several possible sources of systematics for the
background and foreground sample as listed in Table 2. We gen-
erate maps of these quantities that are pixelated and smoothed on
the same scale as the kg and k, maps. We then evaluate the contri-
bution of these effects to the correlation coefficient (Eqn. 16) based
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Table 2. Quantities examined in our systematics tests.

Map name description

kE (signal) kg from 7;, 9 for background sample

kg (signal)  «, from main foreground sample

kB kg from 71, 9> for background sample

ns star number per pixel

ng.b galaxy number per pixel for background sample
snr signal-to-noise of galaxies in im3shape
mask fraction of area masked in galaxy postage stamp
gl average 7; for background sample

22 average 7 for background sample

pstel average PSF ellipticity

psf_e2 average PSF ellipticity

pst-T average PSF size

psf_kE kg generated from average PSF ellipticity
pst_kB kp generated from average PSF ellipticity
zp-b mean photo-z for background sample
zpf mean photo-z for foreground sample

ebv mean extinction

skysigma RMS sky brightness in ADU

sky mean sky brightness in ADU

maglim mean limiting i-band AB magnitude
exptime mean exposure time in seconds

airmass mean airmass

on the following simple diagnostic quantity:

pK[;@ng

18
Pee (1%

Py 0 =
with pxy being the cross-correlation function, which is effectively
the unnormalized Pearson correlation coefficient between X and Y,
or

pxy = (XY). (19)

Equation 18 measures the contribution from some systematics field
O 0 P, We calculate Py, ;@ With © being any of the 20 quan-
tities in Table 2 (excluding the signal). Figure 9 shows the normal-
ized cross-correlation coefficient ngxg;e /Picy k, values for all the
quantities considered for 10 and 20 arcmin smoothing, with the red
dashed line at 5%. The error bars are estimated by jackknife re-
sampling similar to that described in §5.1, and the two panels show
the results for ngmix and im3shape respectively. The normalized
cross-correlation coefficient is a measure of the fractional contam-
ination in the Pearson coefficient (Equation 16) from each of the
systematics maps ©.

We find that for ngmix all quantities show contributions to the
systematic uncertainties at 10 arcmin smoothing to be at the level
of 5% or lower, while the systematics increase to up to 15% when
smoothing at the 20 arcmin scale (though with large error bars on
the systematics estimation). For im3shape, most of the values stay
below 5% for both smoothing scales. The largest contribution in
both cases come from the variation in the PSF properties (psf_el,
psf_e2, psf_kB). Since all these PSF quantities are correlated with
each other, and many other parameters (g1, g2, snr, maglim) are
correlated with the PSF properties, we do not expect the total sys-
tematics contamination to be a direct sum of all these parameters.
Instead, we discuss in Appendix B how one can isolate the inde-
pendent contributions of the systematics via a Principal Component
Analysis approach and correct for them. We find that the correction
changes the final Pearson correlation coefficient by 3.5% relative to
the original py, K, measured in §5.

Finally, to check the level of systematic contamination in our
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Figure 10. Pearson correlation coefficient pi,@ where © represents the quantities listed in Table 2. We show the statistics for two smoothing scales and for
both ngmix (left) and im3shape (right). The right-most points in both panel correspond to the detection signal in Figure 5 and Figure 6. The error bars are
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thus the y-axis values are not directly comparable.

kg map itself, we also calculate the Pearson correlation coefficient
(Eqn. 16) between the various maps in Table 2 and our xr map.
Note that this contamination may or may not be pronounced in Fig-
ure 9 since the statistics plotted there also take into account the cor-
relation of x, with the various quantities. This test is independent
of the foreground map, therefore is important for applications of the
kg map that do not also use the foreground maps. Figure 10 shows
the resulting 21 Pearson correlation coefficients. We find that the
signal shown in the right-most points in the plot (P, ) is larger
than all other correlations by at least a factor of ~3.

We also note that in both of these tests, the area of the map is
not big enough to ignore the fact that some of these correlations can

be intrinsically non-zero, even if there were no systematics contam-
ination in the maps.

7 CONCLUSIONS

Weak lensing mass maps, or convergence maps, enable a number of
cosmological studies: cross-correlations with galaxies, clusters and
filaments, and with Sunyaev-Zel’dovich (SZ) or lensing maps from
the cosmic microwave background (CMB). In addition, 2-point cor-
relation functions of the convergence field provide a useful and sim-
ple check on the measurements made directly with the shear, while
higher order correlations are easier to measure and interpret than
those of the two-component shear field.

(© 0000 RAS, MNRAS 000, 000-000



In this work, we present a weak lensing mass map based
on galaxy shape measurements in the 139 deg? SPT-E field from
the Dark Energy Survey Science Verification data. We have cross-
correlated the mass map with maps of galaxy and cluster samples
in the same dataset.

We constructed mass maps from the foreground Redmagic
LRG and general magnitude-limited galaxy samples under the as-
sumption that mass traces light. We find that the E-mode of the
convergence map correlates with the galaxy based maps with high
statistical significance. We repeated this analysis at various levels of
smoothing scales and compared the results to measurements from
mock catalogs that reproduce the galaxy distribution and lensing
shape noise properties of the data. The Pearson cross-correlation
coefficient is 0.39 £0.06 (0.36 4+ 0.05) at 10 arcmin smoothing
and 0.52£0.08 (0.46 +=0.07) at 20 arcmin smoothing for the main
(LRG) foreground sample. This corresponds to a ~ 6.86 (7.50)
significance at 10 arcmin smoothing and ~ 6.86 (6.40) at 20 ar-
cmin smoothing. We get comparable values from the mock cata-
logs, indicating that statistical uncertainties, not systematics, dom-
inate the noise in the data. The B-mode of the mass map is consis-
tent with noise and its correlations with the foreground maps are
consistent with zero at the 10 level.

To examine potential systematic uncertainties in the conver-
gence map we identified 20 possible systematic tracers such as see-
ing, depth, PSF ellipticity and photo-z uncertainties. We show that
the systematics effects are consistent with zero at the 1 or 20 level.
In Appendix B, we present a simple scheme for the estimation of
systematic uncertainties using Principal Component Analysis. We
discuss how these contributions can be subtracted from the mass
maps if they are found to be significant.

The results from this work open several new directions of
study. Potential areas include the study of the relative distribution
of hot gas with respect to the total mass based on X-ray or SZ ob-
servations, estimation of galaxy bias, constraining cosmology using
peak statistics, and finding filaments in the cosmic web. The tools
that we have developed in this paper are useful both for identifying
potential systematic errors and for cosmological applications. The
observing seasons for the first two years of DES are now complete
(Diehl et al. 2014) and contain an area well over ten times that of
the SV data, though shallower by about half a magnitude. The full
DES survey area will be ~ 35 times larger than that presented here,
at roughly the same depth. The techniques and tools developed in
this work will be applied to this new survey data, allowing signifi-
cant expansion of the work here.
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APPENDIX A: FOREGROUND SAMPLE SELECTION

As discussed in §3.2, we consider two factors that can affect the
selection of our foreground sample — spatial variation in depth and
spatial variation in seeing. If not taken care of, these effects will
result in apparent spatial variation of the foreground galaxy number
density that is not due to the cosmological clustering of galaxies.
Below we describe tests for each of these and determine a set of
selection criteria based on the analysis.

Al Depth variation

Spatial variation in the depth of the images can cause the apparent
galaxy number density to vary, as more or less galaxies survive the
detection threshold. We would like to construct a foreground galaxy
sample which minimizes this varying depth effect. A simple solu-
tion is to place a magnitude cut slightly shallower than the limiting
magnitude in all of the areas considered, so that the sample is close
to complete in that magnitude range.

We find that in our area of interest, with a magnitude cut at
i <22, we have 97.5% of the area that is complete to this magnitude
limit®, while the 2.5% slightly shallower is not expected to yield
significant change in our results.

A2 Seeing variation

Spatial variation in seeing can lead to spatial variation in appar-
ent galaxy number density, as large seeing leads to less effective
star-galaxy separation as well as higher probability of blending in
crowded fields. To test this, we first select a foreground sample with
i <22 and 0.1 < z < 0.5 according to §3.2. Then we look at the
correlation between the galaxy number density in this foreground
sample and the average seeing values at these locations, both cal-
culated on a grid of 5x5 arcmin® pixels without smoothing. Fig-
ure Al shows the galaxy number density versus seeing. The black
data points show the mean and RMS (multiplied by 10 for easy vi-
sualisation) of the scatter plot in 15 seeing bins. There is a small
anti-correlation between these two values at the 6% level. This is at
an acceptable level for us to continue the analysis without masking
out the extreme high/low seeing regions.

6 Note that we use the 100 galaxy limiting magnitude, which is a rather
conservative measure for the completeness, as we detect many more galax-
ies below 100. Those galaxies would be complete at fainter magnitude cuts.
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Figure A1. Galaxy number density as a function of the seeing in the area of
consideration. The black line shows the mean and RMS (multiplied by 10
for easy visualisation) of the scatter plot in 15 seeing bins.

APPENDIX B: CORRECTING FOR SYSTEMATIC
CONTAMINATION USING PCA

As shown in §6, we can use Eqn. 18 to check for any outstanding
systematic contamination in our kg map and its correlation with
the kg map. Here we present a general treatment to correct for these
systematic contaminations, similar to that used in Ross et al. (2012)
and Ho et al. (2012).

Assume that our measured kg map is a linear combination of
the true Kg yye map and some small coefficient ¢; times the sys-
tematics maps {M;} that can potentially contaminate the kg maps
(e.g.seeing, PSF ellipticity). That is

N
KE = KE rue + 3, 0iM;, (B1)

1
where we have a total of N systematics maps. Similarly, we have
the expression for the measured K, in the same way

N
K¢ = Kg true + ZﬁiMi7 (B2)
i

where f3; is the linear coefficient in this case.
Assuming the true maps are uncorrelated with the systematics
maps, we have

(KE trueMi) = 0; (B3)

(Kg,trueMi) = 0. (B4)

Correlating the measured kg with a single systematics map gives
N
(keMj) = () M) M;). (B5)
i

We can construct a set of systematics maps that are uncorrelated
between each other, or (M;M_;) = 0, and then extract all the coef-
ficients ¢ from the observables as follows:

(keMj) = 0 (MM;):;

(kgM;)

o ;
T (MM

N
KeM;
KE true = KE _Z EJWEMli
i M

1

M;. (B6)
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Figure B1. The systematics map for kg (left) and &, (right) shown is com-
piled using a linear combination of 20 principal components extracted from
the systematics maps listed in Table 2.

And similarly for Kg, We have

N (e M;
Kot = Ko — Y EA’;iMii M. (B7)

i

To construct a set of systematics maps {M;} uncorrelated between
each other from a set of systematics maps correlated with each
other {M!} (i.e. those listed in Table 2), we invoke the Princi-
pal Component Analysis (PCA) method. In this case, each of the
pixelated maps, after normalizing by its scatter, {M/} form a data
vector, and the extracted eigenvectors form a orthogonal basis set,
which we can use as {M;}. We find that the principal component
maps correspond strikingly to physical properties of the data. Fig-
ure B1 shows the systematics maps corresponding to kg and main
sample K, extracted using this PCA method, or the second terms on
the right-hand-size of Equation B6 and Equation B7. We find that
the main contributions come from large-scale structures and are at
a very low level compared to the original maps (see Figure 2). We
subtract these systematics maps from the original kg and x, maps
according to Eqn. B6 and Eqn. B7. The Pearson correlation coeffi-
cient changes by 3.5% relative to the original py, x, measured in §5,
suggesting the contamination to the cross-correlation coefficient is
not significant.

It is worth noting that there are a few assumptions that go into
the calculation above, which need to be accounted for when inter-
preting these results. First, we have assumed that the systematic
maps have no correlation with the true kg and x, maps. For a large
enough area, this should be true, but for small maps we can ex-
pect some correlation just by chance. Hence the quantitative “im-
provement” we get in the Pearson correlation coefficient must be
carefully checked with simulations with larger area than used here.
Second, since the method is based on PCA, the effectiveness of the
correction depends on finding the important systematics maps that
can contribute /inearly to the contamination. That is, if the system-
atics come from a non-linear combination of the various maps (e.g.
multiplication of two maps), then one would not automatically cor-
rect for it without putting in this correct non-linear combination of
maps in the first place.
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